Genome-wide mapping of TnrA-binding sites provides new insights into the TnrA regulon in Bacillus subtilis
نویسندگان
چکیده
Under nitrogen limitation conditions, Bacillus subtilis induces a sophisticated network of adaptation responses. More precisely, the B. subtilis TnrA regulator represses or activates directly or indirectly the expression of a hundred genes in response to nitrogen availability. The global TnrA regulon have already been identified among which some directly TnrA-regulated genes have been characterized. However, a genome-wide mapping of in vivo TnrA-binding sites was still needed to clearly define the set of genes directly regulated by TnrA. Using chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP-on-chip), we now provide in vivo evidence that TnrA reproducibly binds to 42 regions on the chromosome. Further analysis with real-time in vivo transcriptional profiling, combined with results from previous reports, allowed us to define the TnrA primary regulon. We identified 35 promoter regions fulfilling three criteria necessary to be part of this primary regulon: (i) TnrA binding in ChIP-on-chip experiments and/or in previous in vitro studies; (ii) the presence of a TnrA box; (iii) TnrA-dependent expression regulation. In addition, the TnrA primary regulon delimitation allowed us to improve the TnrA box consensus. Finally, our results reveal new interconnections between the nitrogen regulatory network and other cellular processes.
منابع مشابه
In Silico Genome-Wide Screening for TnrA-Regulated Genes of Bacillus clausii
Bacillus clausii TnrA transcription factor is required for global nitrogen regulation. In order to obtain anoverview of gene regulation by TnrA in B. clausii KSMK16, the entire genome of B. clausii was screened forthe consensus sequence, 5’-TGTNAN7TNACA-3’ known as the TnrA box, and 13 transcription units werefound containing a putative TnrA box. The TnrA targets identified in...
متن کاملBacillus subtilis Glutamine Synthetase Controls Gene Expression through a Protein-Protein Interaction with Transcription Factor TnrA
Bacillus subtilis TnrA, a global regulator of transcription, responds to nitrogen availability, but the specific signal to which it responds has been elusive. Genetic studies indicate that glutamine synthetase is required for the regulation of TnrA activity in vivo. We report here that the feedback-inhibited form of glutamine synthetase directly interacts with TnrA and blocks the DNA binding ac...
متن کاملNegative transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA.
The Bacillus subtilis ilv-leu operon is involved in the synthesis of branched-chain amino acids (valine, isoleucine, and leucine). The two- to threefold repression of expression of the ilv-leu operon during logarithmic-phase growth under nitrogen-limited conditions, which was originally detected by a DNA microarray analysis to compare the transcriptomes from the wild-type and tnrA mutant strain...
متن کاملFunctional analysis of the carboxy-terminal region of Bacillus subtilis TnrA, a MerR family protein.
The Bacillus subtilis TnrA transcription factor belongs to the MerR family of proteins and regulates gene expression during nitrogen-limited growth. When B. subtilis cells are grown with excess nitrogen, feedback-inhibited glutamine synthetase forms a protein-protein complex with TnrA that prevents TnrA from binding to DNA. The C-terminal region of TnrA is required for the interaction with glut...
متن کاملFeedback-resistant mutations in Bacillus subtilis glutamine synthetase are clustered in the active site.
The feedback-inhibited form of Bacillus subtilis glutamine synthetase regulates the activity of the TnrA transcription factor through a protein-protein interaction that prevents TnrA from binding to DNA. Five mutants containing feedback-resistant glutamine synthetases (E65G, S66P, M68I, H195Y, and P318S) were isolated by screening for colonies capable of cross-feeding Gln(-) cells. In vitro enz...
متن کامل